Referências Bibliográficas

- [Banerjee e lerapetritou] BANERJEE, I.; IERAPETRITOU, M. G. Development of an adaptive chemistry model considering micromixing effects. Chemical Engineering Science, 58:4537–4555, 2003. 3.5.2
- [Béguier et al.] BÉGUIER, C.; DEKEYSER, I. ; LAUNDER, B. E.. Ratio of scalar and velocity dissipation time scales in shear flow turbulence. Physics of Fluids, 21(3):307–310, 1978. 4.3
- [Bilger et al.] BILGER, R. W.; POPE, S. B.; BRAY, K. N. C. ; DRISCOLL, J. F.. Paradigms in turbulent combustion research. Proceedings of the Combustion Institute, 30:21-40, 2005. 1.1, 1.2
- [Borghi e Champion] BORGHI, R.; CHAMPION, M. Modélisation et théorie des flammes. Technip, 1 edition, 2000. 5.2.3
- [Burrage e Tian] BURRAGE, K.; TIAN, T.. A note on the stability properties of the euler methods for solving stochastic differential equations. New Zealand Journal of Mathematics, 29(2):115–129, 2000. 4.8, 4.8
- [Burrage e Tian] BURRAGE, K.; TIAN, T.. The composite euler method for stiff stochastic differential equations. Journal of Computational and Applied Mathematics, 131:407–426, 2001. 2.2
- [Chang] CHANG, W. C.. Modeling of NOx Formation in Turbulent Flames - Development of Reduced Mechanism and Mixing Models. PhD thesis, University of California, Berkeley, 1995. 1.1, 3.1, 3.5.1
- [Chen et al.] CHEN, H.; CHEN, S. ; KRAICHNAN, R. H.. Probability distribution of a stocastically advectes scalar field. Physics Review Letters, 63:2657-2660, 1989. 2.1
- [Chen] CHEN, J.. Stochastic modeling of partially stirred reactors. Combustion Science Technology, 122:63–94, 1997. 1.1, 3.5.1, 3.5.2, 4.1, 4.7

- [Correa] CORREA, S. M.. Turbulence-chemistry interactions in the intermediate regime of premixed combustion. Combustion and Flame, 93:41-60, 1993. 1.2, 2.1, 3.5.1
- [Correa] CORREA, S. M. A direct comparison of pair-exchange and iem models in premixed combustion. Combustion and Flame, 103:194–206, 1995. 1.2, 4.7
- [Curl] CURL, R. L.. Dispersed phase mixing: I. theory and effects in simple reactors. AIChE Journal, 9:175–181, 1963. 1.4, 2.1, 4.4
- [Dopazo e O'Brien] DOPAZO, C.; O'BRIEN, E. An approach to the autoignition of a turbulent mixture. Acta Astronautica, 1:1239–1266, 1974. 2.1, 4.4, 4.4.3
- [Dopazo] DOPAZO, C.. Relaxation of initial probability density functions in the turbulent convection of scalar fields. Physics of Fluids, 22:20-30, 1979. 2.1, 4.1, 4.4, 4.4.2, 4.4.2, 5.1.2
- [Dopazo] DOPAZO, C.. Recent developments in pdf methods. Turbulent Reactive Flows, 1:375–474, 1994. 2.1, 3.1, 4.2.2, A.2
- [Eswaran e Pope] ESWARAN, W.; POPE, S. B. Direct numerical simulations of the turbulent mixing of a passive scalar. Physics of Fluids, 31:506-520, 1988. 2.1, 4.2.5, 4.2.7, 4.3, 5.1.3, 5.1.4, 5.1.4, 6
- [Flagan e Appleton] FLAGAN, R. C.; APPLETON, J. P. A stochastic model of turbulent mixing with chemical reaction - nitric oxide formation in a plug-flow burner. Combustion and Flame, 23:249–267, 1974. 4.4
- [Fox] FOX, R. O.. Computational Model for Turbulent Reacting Flows. Cambridge, 2 edition, 2003. 2.1, 3.1, 3.3, 3.4, 3.4, 4.1, 4.2.3, A.2
- [Gardiner] GARDINER, C.. Handbook of Stochastic Methods. Springer, Berlin, 3 edition, 1990. 2.1, 2.2, 2.2, 4.4.3, 4.5.1, 4.5.2, 4.6.3, 4.7, 4.7, 4.8, 4.8, 5.1.3
- [Guerra] GUERRA, J.. Introdução às equações diferenciais estocásticas. Technical report, Núclo de matemática financiera (NMF) - CEMAPRE, 2005. 2.2
- [Harworth e Pope] HARWORTH, D. C.; POPE, S. B. A generalized langevin model for turbulent flow. Physics of Fluids, 29:387–405, 1985. 2.1

- [Heinz] HEINZ, S.. Statistical Mechanics of Turbulent Flows. Springer-Verlag, Berlin, 1 edition, 2003. 2.2, 2.2, 3.1, 4.3
- [Higham] HIGHAM, D. J.. An algorithmic introduction to numerical simulations of stochastic differential equations. Society for Industrial and Applied Mathematics, 43(3):525-546, 2001. 2.2, 2.2
- [Higham e Kloeden] HIGHAM, D. J.; KLOEDEN, P. E. Maple and matlab for stochastic differential equations. Progamming Language and System in Computational Economics and Finance, 3:1–31, 2001. 2.2
- [Hill] HILL, J. C.. Zero difusivity invariance for turbulent chemical reaction. Physics of Fluids Journal, 13:1394–1396, 1969. 2.1, 4.4
- [Itô] ITO, K.. Differential equations determining a markov process. Kiyosi Ito Selected Papers, Springer-Verlag, 1986, 22(1-3):81-101, 1942. 2.2
- [Jaberi et al.] JABERI, F.; MADNIA, R.; GIVI, C. K.. Non-gaussian scalar statistics in homogeneous turbulence. Journal of Fluid Mechanics, 313:241-282, 1996. 4.2.5
- [Janicka, et al.] JANICKA, J.; KOLBE, W. ; KOLLMAN, W.. Closure of the transport equation for the probability density function of turbulent scalar fields. Journal of Non-Equilibrium Thermodynamics, 4:47-66, 1979. 2.1, 4.4, 4.4.2, 4.4.2
- [Kloeden e Platen] KLOEDEN, P. E.; PLATEN, E. Numerical Solution os Stochastic Differential Equations. Springer, Berlin, 1 edition, 1992. 2.2, 4.8, 4.8
- [Kloeden, et al.] KLOEDEN, P. E.; PLATEN, E. ; SCHURZ, H.. Numerical Solution of SDE Through Computer Experiments. Springer-Verlag, Berlin, 1 edition, 2003. 2.2
- [Lundgren] LUNDGREN, T. S.. Distributions functions in the statistical theory of turbulence. Physics of Fluids, 10:969–975, 1967. 2.1, A.2
- [Majda e Kramer] MAJDA, A. J.; KRAMER, P. R. Simplified models for turbulent difussion : Theory, numerical modelling and physical phenomena. Phisycs Reports, 314:237–574, 1999. 4.2.5
- [Milstein et. al] MILSTEIN, G. N.; PLATEN, E. ; SCHURZ, H.. Balanced implicit methods for stiff stochastic systems. Journal of Numerical Analysis, Society for Industrial and Applied Mathematics, 35:1010–1019, 1998. 2.2

- [Monin] MONIN, A. S.. Equations of turbulent motion. Journal of Applied Mathematics and Mechanics, 31:1057–1068, 1967. 2.1
- [Peters] PETERS, N.. Turbulent Combustion. Cambridge University Press, Cambridge, 1 edition, 2000. 4.4.1
- [Poinsot e Veynante] POINSOT, T.; VEYNANTE, D.: Theroretical and Numerical Combustion. Edwards, 2 edition, 2005. 4.6.1
- [Pope] POPE, S. B.. Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Physics of Fluids, 24:588-596, 1981. 4.4
- [Pope] POPE, S. B.. An improved turbulent mixing model. Combustion Science and Technology, 28:131–145, 1982. 2.1, 4.3, 4.4, 4.4.1, 4.4.2, 4.4.2, 2
- [Pope] POPE, S. B.. Pdf methods for turbulent reactive flows. Progress in Energy and Combustion Science, 11:119–192, 1985. (document), 1.1, 2.1, 3.1, 3.3, 3.3, 4.1, 4.2.3, 4.4.3, 4.5.1, 4.5.1, A.1, A.2, A.2
- [Pope e Chen] POPE, S. B.; CHEN, Y. L.: The velocity-dissipation probability function model for turbulent flows. Physics of Fluids, 2:1437– 1449, 1990. 2.1, 3.1, 3.2.1, 4.5.2, 4.5.2, 4.5.2
- [Pope] POPE, S. B.. Mapping closures for turbulent mixing and reaction. Theoretical and Computational Fluid Dynamics, 2:255–270, 1991. 2.1
- [Pope] POPE, S. B.. On the relationship between stochastic langrangian models of turbulence and second moment closures. Physics of Fluids, 6:793-349, 1994a. 3.4
- [Pope] POPE, S. B.. Langranian pdf methosd for turbulent flows. Annual Reviews of Fluid Mechanics, 26:23–63, 1994b. A.2
- [Pope] POPE, S. B. Turbulent Flows. Cambridge, 1 edition, 2000. 3.2.1, 4.1, 4.2
- [Pratt] PRATT, D. T.. Coalescence/dispersion modeling of highintensity combustion monte carlo stochastic model including finite-rate complex chemistry. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 17th, New Orleans, p. 15–17, 1979. 4.4

- [Sabel`nikov e Gorokhovski] SABEL`NIKOV, V. A.; GOROKHOVSKI, M.. Extended Imse and langevin models of the scalar mixing in turbulent flows. Second International Symposium of Turbulence an Shear Flow Phenomena, Royal Institute of Technology (KTH), 4:27–29, 2001. 1.2, 1.3, 1.4, 2.1, 2.2, 4, 4.5, 4.5.1, 4.5.1, 4.5.1, 4.5.1, 4.5.2, 4.5.2, 4.5.2, 4.5.2, 4.6.3, 4.7, 5, 5.1.3, 5.1.3, 5.1.3, 5.2, 6
- [Sabel`nikov e Figueira da Silva] SABEL`NIKOV, V. A.; FIGUEIRA DA SILVA, L. F.. Partially stirred reactor: Study of the sensitivity of the monte-carlo simulation to the number of stochastic particles with the use of a semi-analytic steady-state solution to the pdf equation. Combustion and Flame, 129:164–178, April 2002. (document), 4.1, 4.6, 4.6.3, 4.4, 4.7, 5.2.1, 5.2.2, 5.2.2, 5.2.3, 5.2.3, 6
- [Sabel`nikov et al.] SABEL`NIKOV, V. A.; GOROKHOVSKI, M. ; BARICAULT, N.. The extended iem mixing model in the framework of the composition pdf approach: Aplications to diesel spray combustion. Combustion Theory and Modeling, 10(1):155–169, 2005. 2.1
- [Soulard et al.] SOULARD, O.; SABEL`NIKOV, V. A.; GOROKHOVSKI, M.. Stochastic scalar mixing model accounting for turbulent frequency multiscale fluctuations. International Journal of Heat and Fluid Flow, 2004. 2.1, 2.2, 4.5.1, 4.5.2
- [Soulard] SOULARD, O.. Approches PDF pour la Combustion Turbulente: Prise en Compte d'un Spectre D'echelles Turbulentes dans la Modélisation du Micromélange et Élaboration d'une Méthode de Monte Carlo Eulériene. PhD thesis, Complexe de Recherche Interpressionnel en Areothermochime CORIA -ONERA, 2005. (document), 4.1, 4.2.4, 4.2.5, 4.4.3, 4.5.2, 4.5.2, 4.7, 5.1.4, 5.1.4, 5.16, 5.17, 6
- [Spalding] SPALDING, D. B.. Mixing and chemical reaction in confined turbulent flames. 13th International Symposium on Combustion, p. 649– 657, 1971. 4.3
- [Spielman e Levenspiel] SPIELMAN, L. A.; LEVENSPIEL, O.. A monte carlo treatment for reacting and coalescing dispersed phase systems. Chemical Engineering Science, 20:247–251, 1965. 2.1
- [Subramaniam e Pope] SUBRAMANIAM, S.; POPE, S. B. A mixing model for turbulent reactive flows based on euclidiean minimum spanning trees. Combustion and Flame, 115(4):487–514, 1998. 1.2, 4.2, 4.2.6, 4.2.7

- [Tian e Burrage] TIAN, T.; BURRAGE, K.. Implicit taylor methods for stiff stochastic differential equations. Applied Numerical Mathematics, 38:167–185, 2001. 2.2, 4.8, 4.8, 4.8, 4.8, 5.1.3, 6
- [Valiño e Dopazo] VALINO, L.; DOPAZO, C.. A binomial sampling model for scalar turbulent mixing. Physics of Fluids, 2:1204–1212, 1990. 2.1, 4.2.3, 4.4
- [Valiño e Dopazo] VALINO, L.; DOPAZO, C.. A binomial langevin model for scalar turbulent mixing. Physics of Fluids, 3:3034–3037, 1991. 2.1, 4.4
- [Valiño] VALINO, L. Monte carlo implementation of a single-scalar mapping closure for difussion in the presence of chemical reaction. Annual Research Briefs, 1991. 2.1
- [Valiño e Gao] VALINO, L.; GAO, F.. Monte carlo implementation of mapping closures: Aplication to a chemical reacting flows. Physics of Fluids, 4:2062, 1992. 2.1
- [Villermaux e Devillon] VILLERMAUX, J.; DEVILLON, J.. Repréntation de la restribution des domaines de ségregation dans un fluide par un modèle d'interacion phénomélogique. 2nd. Symposium Chemical Reaction Engineering, B:1-13, 1972. 4.4.3
- [Warhaft e Lumley] WARHAFT, Z.; LUMLEY, J. L. An experimental study of the decay of temperature fluctuations in grid-generated turbulence. Journal of Fluids Mechanics, 88:659, 1978. 2.1, 4.2.5, 4.2.7, 4.3
- [Yeung e Pope] YEUNG, P. K.; POPE, S. B.. Lagrangian statistics from direct numerical simulations of isotropic turbulence. Journal of Fluid Mechanics, 207:531-586, 1989. 4.5.2
- [Zeldovich et al.] ZELDOVICH, Y. B.; BARENBLATT, G. I.; LIBROVICH, V. B.; MAKHVILADZE, G. M.: The Mathematical Theory of Combustion and Explosions. Plenum Press, New York, 1 edition, 1985. 3.5.1

A Derivação da Equações de Transporte da PDF

Neste apêndice será derivada a equação de transporte da Função de Densidade de Probabilidade (PDF) conjunta do campo de velocidade, das frações mássicas das espécies químicas e da entalpia total, $P_{\Phi}(\Psi; \mathbf{x}, t) =$ $P_{\mathbf{U},\mathbf{Y},h}(\mathbf{V}, \mathbf{\Gamma}, H; \mathbf{x}, t)$, a partir das equações de transporte de massa das espécies químicas, de quantidade de movimento e de energia escrita sob a forma de entalpia total.

A.1 Equações de Transporte

O estado de uma mistura gasosa composta por K espécies é completamente descrito pelas frações mássicas $Y_k(\mathbf{x}, t)$ das k espécies químicas (k = 1, ..., K), pela entalpia total $h_t(\mathbf{x}, t)$, a pressão $p(\mathbf{x}, t)$ e a velocidade $\mathbf{U}(\mathbf{x}, t)$, (Pope, 1985). A densidade, ρ , pode ser escrita como uma função das frações mássicas Y_k , da entalpia estática h e da pressão p, mediante a utilização de uma equação de estado:

$$\rho = \rho(Y_k, h_t, p). \tag{A-1}$$

Neste trabalho, admite-se que a evolução de um escoamento é governada pelas equações de transporte de massa, das espécies químicas, de quantidade de movimento e da energia sob a forma da entalpia total, isto é

$$\frac{\partial \rho U_i}{\partial t} + \frac{\partial \rho U_j U_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i; \quad i = 1, 2, 3.$$
(A-2)

$$\frac{\partial \rho Y_k}{\partial t} + \frac{\partial \rho U_j Y_k}{\partial x_j} = -\frac{\partial J_{kj}}{\partial x_j} + S_k; \quad k = 1, ..., K.$$
(A-3)

$$\frac{\partial \rho h_t}{\partial t} + \frac{\partial \rho U_j h_t}{\partial x_j} = \frac{\partial p}{\partial t} + \frac{\partial (-\mathcal{J}_j + U_i \tau_{ij})}{\partial x_j} + U_j F_j.$$
(A-4)

Nesta equações τ_{ij} é o tensor das tensões viscosas e F_i é a força de corpo, J_{kj} é o fluxo molecular difusivo da espécie k na direção j, e S_k é a taxa de reação desta espécie química por unidade de volume. A taxa de reação é função das frações mássicas, da pressão e da temperatura e, uma vez que a temperatura $T(\mathbf{x}, t)$ depende das frações mássicas Y_k , da entalpia estática h e da pressão p tem-se que, $S_k = S_k(Y_k, h, p)$. Note-se da Eq. (A-4) que os termos que representam a potência devido às forças viscosas e de corpo são $U_i \tau_{ij}$ e $U_i F_j$, respectivamente.

Estas equações de transporte são fechadas pelas expressões do fluxo molecular das espécies químicas do tensor de tensões viscosas. Neste trabalho os fluidos são assumidos Newtonianos, caso em que o tensor devido aos efeitos viscosos é dado por:

$$\tau_{ij} = \mu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - \frac{2}{3} \mu \delta_{ij} \left(\frac{\partial U_k}{\partial x_k} \right), \tag{A-5}$$

onde a viscosidade μ , depende das propriedades do fluido e δ_{ij} é o delta de Kronecker. O fluxo por difusão molecular das espécies será descrito mediante a utilização da lei de Fick

$$J_{kj} = -\frac{\mu}{Sc_k} \frac{\partial Y_k}{\partial x_j},\tag{A-6}$$

onde J_{kj} é o fluxo mássico das espécie k na direção j, enquanto que Sc_k representa o número de Schmidt

$$Sc_k = \frac{\mu}{\rho D_k},$$
 (A-7)

nesta equação D_k representa a difusividade molecular das espécie química k. O fluxo de difusão da entalpia é descrito pela lei de Fourier

$$\mathcal{J}_{j} = -\frac{\mu}{Pr} \left[\frac{\partial h}{\partial x_{j}} + \sum_{k=1}^{K} \left(\frac{Pr}{Sc_{k}} - 1 \right) h_{k} \frac{\partial Y_{k}}{\partial x_{j}} \right].$$
(A-8)

Na Eq. (A-8), a transferência de calor por radiação e o efeito Duffour, isto é, a difusão da entalpia devido ao gradiente das frações das espécies foram desprezados. O termo, \mathcal{J}_j representa o fluxo de energia devido ao transporte molecular e h_k é a entalpia estática de cada um das espécies k presentes no escoamento,

$$h_k = h_k^o + \int_{T_o}^T c_{p,k} dT.$$
 (A-9)

onde h_k^o é a entalpia (calor) de formação da espécie $k \in c_{p,k}$ é o calor específico a pressão constante da espécie k. O número de Prandtl Pr compara o transporte difusivo de quantidade de movimento (forças viscosas) e a difusividade térmica

$$Pr = \frac{\mu c_p}{\lambda}.\tag{A-10}$$

Nesta equação c_p e λ representam, respectivamente, o calor específico médio a pressão constante e a condutividade térmica do fluido. O número de Lewis da espécie química k, Le_k , que é a relação entre a difusividade térmica e a difusividade da espécie k é definido como

$$Le_k = \frac{Sc_k}{Pr} = \frac{\lambda}{\rho c_p D_k}.$$
(A-11)

Note-se que a equação de continuidade pode ser obtida a partir da soma em k da Eq. (A-3),

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho U_j}{\partial x_i} = 0. \tag{A-12}$$

Neste estudo utilizaremos a hipóteses da igualdade dos coeficientes de difusão molecular $D_k \approx D$, o que tem como consequência que os números de Schmidt e Lewis são iguais para todas as espécies químicas. Além disso, será utilizada a hipótese de número Lewis igual à unidade. Utilizando a hipótese de número de Mach pequeno, o termo transiente de pressão $\partial p/\partial t$, e o termo de dissipação viscosa $\partial U_i \tau_{ij}/\partial x_j$, podem ser desprezados. Além disto, a energia cinética é muito menor do que a entalpia estática, logo $h \approx h_t$.

Com estas hipóteses e, mediante a utilização da equação de continuidade, as equações de transporte de massa, das espécies químicas e da entalpia, podem ser escritas como

$$\rho \frac{D}{Dt} \begin{cases} U_1 \\ U_2 \\ U_3 \\ Y_1 \\ \vdots \\ Y_K \\ h \end{cases} = -\frac{\partial}{\partial x_j} \begin{cases} -\tau_{1j} \\ -\tau_{2j} \\ -\tau_{3j} \\ J_{1j} \\ \vdots \\ J_{Kj} \\ \mathcal{J} \end{cases} + \begin{cases} -\partial p/\partial x_1 + F_1 \\ -\partial p/\partial x_2 + F_2 \\ -\partial p/\partial x_3 + F_3 \\ S_1 \\ \vdots \\ S_K \\ S_h \end{cases} , \qquad (A-13)$$

ou de uma forma mais compacta,

$$\rho \frac{D\mathbf{\Phi}}{Dt} = -\rho \frac{\partial \mathbf{J}}{\partial x_j} + \mathbf{S},\tag{A-14}$$

onde Φ é o vetor que representa as propriedades transportadas, **J** e **S** representam os vetores dos fluxos difusivos e do termo produção:

$$\boldsymbol{\Phi} = \begin{cases} U_{1} \\ U_{2} \\ U_{3} \\ V_{1} \\ \vdots \\ Y_{K} \\ h \end{cases}, \quad \mathbf{J} = \begin{cases} -\tau_{1j} \\ -\tau_{2j} \\ -\tau_{3j} \\ J_{1j} \\ \vdots \\ J_{Kj} \\ \mathcal{J} \end{cases}, \quad e \quad \mathbf{S} = \begin{cases} -\partial p / \partial x_{1} + F_{1} \\ -\partial p / \partial x_{2} + F_{2} \\ -\partial p / \partial x_{3} + F_{3} \\ S_{1} \\ \vdots \\ S_{K} \\ S_{h} \end{cases} \right). \quad (A-15)$$

Nas Eqs. (A-13) e (A-14) foi empregada a igualdade:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + U_j \frac{\partial}{\partial x_j},\tag{A-16}$$

que representa a derivada material de uma partícula de fluido. Uma formulação alternativa, muito utilizada na derivação da equação de transporte da função densidade de probabilidade (PDF) conjunta, é

$$\rho \frac{DU_i}{Dt} = \rho A_i, \quad \text{onde} \quad \rho A_i(\mathbf{x}, t) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i, \qquad i = 1, 2, 3 \quad (A-17)$$

$$\rho \frac{DY_k}{Dt} = \rho C_k, \quad \text{onde} \quad \rho C_k(\mathbf{x}, t) = -\frac{\partial J_{kj}}{\partial x_j} + S_k, \qquad k = 1, ..., K \quad (A-18)$$

$$\rho \frac{Dh}{Dt} = \rho C_h, \quad \text{onde} \quad \rho C_h(\mathbf{x}, t) = -\frac{\partial \mathcal{J}_j}{\partial x_j} + S_h,$$
(A-19)

onde o temo ρA_i representa a aceleração da partícula, ρC_k e ρC_h representam, respectivamente, as taxas de variação das frações mássicas das espécies químicas e da entalpia.

Note-se que, com as hipóteses do número de Lewis unitário e considerando a energia cinética como desprezível em comparação com a entalpia estática, o fluxo difusivo da entalpia estática \mathcal{J} dado pela Eq. (A-8) pode ser escrito como

$$\mathcal{J}_j = -\frac{\mu}{Pr} \frac{\partial h}{\partial x_j}.$$
 (A-20)

Com estas hipóteses, S_h é nulo.

A partir das hipóteses adotadas, o estado instantâneo do fluido em qualquer posição é completamente descrito pelas três componentes da velocidade $\mathbf{U} = (U_1, U_2, U_3)$, por um conjunto de K frações mássicas $\mathbf{Y} = (Y_1, ..., Y_K)$, pela entalpia h e pela pressão, p. Assim, uma descrição completa de um escoamento turbulento reativo pode ser realizada mediante a utilização da PDF conjunta dos campos de velocidade, das frações mássicas e da entalpia.

Existem diversas maneiras de derivar a equação de transporte da PDF. Um método muito utilizado, é aquele desenvolvido por Lundgren, (1967). Porém, neste apêndice será apresentado aquela baseada nos tratamentos de Pope (1985) e Dopazo (1994).

Define-se um conjunto de variáveis aleatórias que representam o estado do fluido $\mathbf{\Phi}(\mathbf{x},t) = [\mathbf{U}(\mathbf{x},t), \mathbf{Y}(\mathbf{x},t), h(\mathbf{x},t)]$. A PDF conjunta do campo vetorial $\mathbf{\Phi}$ é definida como

$$P_{\Phi}(\Psi; \mathbf{x}, t) d\Psi \equiv Prob \{ \Psi \leq \Phi(\mathbf{x}, t) < \Psi + d\Psi \}$$

$$\equiv Prob(\{ \mathbf{V} \leq \mathbf{U}(\mathbf{x}, t) < \mathbf{V} + d\mathbf{V} \} \cap$$
(A-21)
$$\{ \mathbf{\Gamma} \leq \mathbf{Y}(\mathbf{x}, t) < \mathbf{\Gamma} + d\mathbf{\Gamma} \} \cap \{ H \leq h(\mathbf{x}, t) < H + dH \} \}.$$

Seja $Q(\Phi) = Q(\mathbf{U}, \mathbf{Y}, h)$ uma função arbitrária do campo aleatório Φ . Nota-se, desta definição, que Q também é um campo aleatório parametrizado por \mathbf{x} e t; ou seja, para cada evento independente de um escoamento turbulento, Q será diferente. Pode-se definir seu valor médio utilizando as propriedades da PDF de Φ . Os valores médios da derivada material de Q, podem ser expressos em termos de derivadas parciais da PDF conjunta do campo vetorial Φ :

$$\left\langle \rho \frac{DQ}{Dt} \right\rangle = \frac{\partial}{\partial t} \left\langle \rho(\mathbf{\Phi}) Q(\mathbf{\Phi}) \right\rangle + \frac{\partial}{\partial x_j} \left\langle \rho(\mathbf{\Phi}) U_j Q(\mathbf{\Phi}) \right\rangle$$
$$= \frac{\partial}{\partial t} \int_{-\infty}^{+\infty} \rho(\mathbf{\Psi}) Q(\mathbf{\Psi}) P_{\mathbf{\Phi}}(\mathbf{\Psi}; \mathbf{x}, t) d\mathbf{\Psi} + \frac{\partial}{\partial x_j} \int_{-\infty}^{+\infty} \rho(\mathbf{\Psi}) Q(\mathbf{\Psi}) U_j P_{\mathbf{\Phi}}(\mathbf{\Psi}; \mathbf{x}, t) d\mathbf{\Psi}.$$
(A-22)

A primeira igualdade é verificada pois a média e o operador da derivada são comutativos. A segunda igualdade decorre da definição de média de conjunto (*ensemble average*). Note-se que Ψ é a variável de integração, o que permite comutar as derivadas e a integral:

$$\left\langle \rho \frac{DQ}{Dt} \right\rangle = \int_{-\infty}^{+\infty} Q(\boldsymbol{\Psi}) \left\{ \rho(\boldsymbol{\Psi}) \frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial t} + \rho(\boldsymbol{\Psi}) V_j \frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial x_j} \right\} d\boldsymbol{\Psi}.$$
(A-23)

Em resumo, devido à natureza linear do operador da derivada, é possível expressar o valor médio da derivada material de Q em termos das derivadas temporal e espacial da PDF conjunta uniponto da velocidade, das frações mássicas e da entalpia.

O valor médio da derivada material de Q também pode ser escrito de outra forma. Considerando que

$$\rho \frac{DQ(\mathbf{\Phi})}{Dt} = \rho \frac{\partial Q}{\partial \Phi_i} \frac{D\Phi_i}{Dt} = \rho \frac{\partial Q}{\partial \Phi_i} R_i, \qquad (A-24)$$

onde,

$$R_i = \frac{D\Phi_i}{Dt}, \quad i = 1, ..., K + 4.$$
 (A-25)

Na Eq. (A-25), R_i representa a taxa da variação por unidade de volume do campo vetorial Φ . Aplicando-se o operador da média à Eq. (A-24)

$$\left\langle \rho \frac{DQ}{Dt} \right\rangle = \left\langle \rho \frac{\partial Q}{\partial \Phi_i} R_i \right\rangle.$$
 (A-26)

O lado direito desta expressão contém informação de natureza multiponto (Fox, 2003) oriunda da média, dos gradientes e dos laplacianos das propriedades. Uma vez que estas informações não se encontram na formulação do tipo uni-ponto para a PDF de $\Phi(\mathbf{x}, t)$, as informações do tipo multi-ponto serão concentradas em um vetor aleatório $\mathbf{Z}(\mathbf{x}, t)$, o qual permite definir a PDF conjunta do tipo uni-ponto de $\Phi \in \mathbf{Z}$ como $P_{\Phi,\mathbf{Z}}(\Phi, \mathbf{z}; \mathbf{x}, t)$. Esta PDF pode ser expressa em termos de uma PDF conjunta condicionada e da PDF conjunta do campo vetorial Φ , segundo o teorema de Bayes

$$P_{\Phi,\mathbf{Z}}(\Psi,\mathbf{z};\mathbf{x},t) = P_{\mathbf{Z}|\Phi}(\mathbf{z}|\Psi;\mathbf{x},t)P_{\Phi}(\Psi;\mathbf{x},t).$$
(A-27)

Assim, o lado direito da Eq. (A-26) pode ser escrito como:

$$\left\langle \rho \frac{\partial Q}{\partial \Phi_{i}} R_{i} \right\rangle \equiv \\ \equiv \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \rho(\boldsymbol{\Psi}) \frac{\partial Q(\boldsymbol{\Psi})}{\partial \Psi_{i}} R_{i}(\boldsymbol{\Psi}, \mathbf{z}) P_{\boldsymbol{\Phi}, \mathbf{Z}}(\boldsymbol{\Psi}, \mathbf{z}; \mathbf{x}, t) d\mathbf{z} d\boldsymbol{\Psi} \\ = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho(\boldsymbol{\Psi}) \frac{\partial Q(\boldsymbol{\Psi})}{\partial \Psi_{i}} \langle R_{i} | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) d\boldsymbol{\Psi}.$$
(A-28)

Nesta equação, o valor médio condicional é definido como

$$\langle R_i | \mathbf{\Psi} \rangle = \int_{-\infty}^{+\infty} R_i(\mathbf{\Psi}, \mathbf{z}) P_{\mathbf{Z} | \mathbf{\Phi}}(\mathbf{z} | \mathbf{\Psi}; \mathbf{x}, t) d\mathbf{z}.$$
(A-29)

Nota-se que $\langle R_i | \Psi \rangle$ é função de Ψ , de modo que o termo do lado direito da Eq. (A-28) pode ser escrito utilizando-se integração por partes:

$$\left\langle \rho \frac{\partial Q}{\partial \Phi_{i}} R_{i} \right\rangle = \int_{-\infty}^{+\infty} \rho(\Psi) Q(\Psi) \langle R_{i} | \Psi \rangle P_{\Phi}(\Psi; \mathbf{x}, t) d\Psi_{\neq i} \Big|_{\Psi_{i}=-\infty}^{\Psi_{i}=+\infty} - \int_{-\infty}^{+\infty} Q(\Psi) \frac{\partial}{\partial \Psi_{i}} \left[\rho(\Psi) \langle R_{i} | \Psi \rangle P_{\Phi}(\Psi; \mathbf{x}, t) \right] d\Psi.$$
(A-30)

A primeira integral do lado direito possui uma dimensão a menos do que a segunda. O primeiro termo do lados direito da Eq. (A-30) está relacionado com o fluxo de probabilidade para as fronteiras do domínio $(-\infty, +\infty)$. Para qualquer PDF que represente processo físico não singular este fluxo deve ser nulo. Assim, o primeiro termo do lado direito é nulo (Pope, 1985). Logo, a média da derivada material de Q se reduz a

$$\left\langle \rho \frac{\partial Q}{\partial \Phi_i} R_i \right\rangle = -\int_{-\infty}^{+\infty} Q(\Psi) \frac{\partial}{\partial \Psi_i} \left[\rho(\Psi) \langle R_i | \Psi \rangle P_{\Phi}(\Psi; \mathbf{x}, t) \right] d\Psi, \quad i = 1, ..., K + 4.$$
(A-31)

De acordo com a Eq. (A-26), as Eqs. (A-23) e (A-31) são equivalentes. Igualando o termo direito das Eqs. (A-23) e (A-31), e considerando que a igualdade deve se manter para uma escolha arbitrária de Q, a equação de transporte da PDF conjunta do vetor Φ apresenta a seguinte forma

$$\rho(\boldsymbol{\Psi}) \left[\frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial t} + V_j \frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial x_j} \right] = -\frac{\partial}{\partial \Psi_i} \left[\rho(\boldsymbol{\Psi}) \langle R_i | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right].$$
(A-32)

Nesta equação, o termo do lado direito é conhecido como *fluxo condi*cionado. Outra forma de descrever a equação de transporte para uma PDF decorre da definição de $Q(\mathbf{\Phi}) = Q(\mathbf{U}, \mathbf{Y}, h)$. Levando em conta a equação (A-24), pode-se verificar que

$$\rho \frac{DQ(\mathbf{\Phi})}{Dt} = \rho \left[\frac{\partial Q}{\partial U_j} \frac{DU_j}{Dt} + \frac{\partial Q}{\partial Y_k} \frac{DY_k}{Dt} + \frac{\partial Q}{\partial h} \frac{Dh}{Dt} \right], \quad (A-33)$$

para j = 1, 2, 3 e k = 1, 2, ..., K. Substituindo as derivadas materiais do lado direito da Eq. (A-33) com Eqs. (A-17), (A-18) e (A-19), tem-se

$$\rho \frac{DQ(\Phi)}{Dt} = \rho \frac{\partial Q}{\partial U_j} A_j + \rho \frac{\partial Q}{\partial Y_k} C_k + \rho \frac{\partial Q}{\partial h_t} C_h.$$
(A-34)

Igualando o lado direito das Eqs. (A-24) e (A-34), para logo aplicar a média

$$\left\langle \rho \frac{\partial Q}{\partial \Phi_i} R_i \right\rangle = \left\langle \rho \frac{\partial Q}{\partial U_j} A_j \right\rangle + \left\langle \rho \frac{\partial Q}{\partial Y_k} C_k \right\rangle + \left\langle \rho \frac{\partial Q}{\partial h_t} C_h \right\rangle.$$
(A-35)

Nota-se que o índice *i* representa o índice global do vetor Φ que corresponde à dimensão do campo de velocidade $\{U_j : j \in 1, 2, 3\}$, do campo das k frações mássicas $\{Y_k : k \in 1, ..., k\}$ e a dimensão unitária da entalpia h. No lado direito da Eq. (A-35) encontram-se representadas as seguintes igualdades

$$\left\langle \rho \frac{\partial Q}{\partial U_j} A_j \right\rangle = \int_{-\infty}^{+\infty} \rho(\boldsymbol{\Psi}) \frac{\partial Q(\boldsymbol{\Psi})}{\partial V_j} \langle A_j | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) d\boldsymbol{\Psi}, \tag{A-36}$$

$$\left\langle \rho \frac{\partial Q}{\partial Y_k} C_k \right\rangle = \int_{-\infty}^{+\infty} \rho(\boldsymbol{\Psi}) \frac{\partial Q(\boldsymbol{\Psi})}{\partial \Gamma_k} \langle C_k | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) d\boldsymbol{\Psi}, \tag{A-37}$$

$$\left\langle \rho \frac{\partial Q}{\partial h_t} C_h \right\rangle = \int_{-\infty}^{+\infty} \rho(\boldsymbol{\Psi}) \frac{\partial Q(\boldsymbol{\Psi})}{\partial H} \langle C_h | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) d\boldsymbol{\Psi}.$$
(A-38)

Levando-se em conta o mesmo procedimento matemático da Eq. (A-30) para as Eqs. (A-36), (A-37) e (A-38), tem-se

$$\left\langle \rho \frac{\partial Q}{\partial \Phi_{i}} R_{i} \right\rangle = -\int_{-\infty}^{+\infty} Q(\boldsymbol{\Psi}) \frac{\partial}{\partial V_{j}} \left[\rho(\boldsymbol{\Psi}) \langle A_{j} | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right] d\boldsymbol{\Psi}$$
$$-\int_{-\infty}^{+\infty} Q(\boldsymbol{\Psi}) \frac{\partial}{\partial \Gamma_{k}} \left[\rho(\boldsymbol{\Psi}) \langle C_{k} | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right] d\boldsymbol{\Psi}$$
$$-\int_{-\infty}^{+\infty} Q(\boldsymbol{\Psi}) \frac{\partial}{\partial H} \left[\rho(\boldsymbol{\Psi}) \langle C_{h} | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right] d\boldsymbol{\Psi}.$$
(A-39)

Igualando as Eqs. (A-23) e (A-39), obtém-se uma forma equivalente para a equação de transporte da PDF conjunta do campo de velocidade, das frações mássicas e da entalpia:

$$\rho(\boldsymbol{\Psi}) \left[\frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial t} + V_j \frac{\partial P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t)}{\partial x_j} \right] = -\frac{\partial}{\partial V_j} \left[\rho(\boldsymbol{\Psi}) \langle A_j | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right] - \frac{\partial}{\partial \Gamma_k} \left[\rho(\boldsymbol{\Psi}) \langle C_k | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right] - \frac{\partial}{\partial H} \left[\rho(\boldsymbol{\Psi}) \langle C_h | \boldsymbol{\Psi} \rangle P_{\boldsymbol{\Phi}}(\boldsymbol{\Psi}; \mathbf{x}, t) \right].$$
(A-40)

Os termos do lado direito da Eq. (A-40) são chamados fluxos condicionados de velocidade, das frações mássicas e da entalpia, respectivamente. Estes termos possuem um papel importante na solução da equação de transporte da PDF conjunta.

Uma das características que a equação de transporte da PDF apresenta e que a torna atrativa frente a outras abordagens de resolução de escoamentos turbulentos reativos, é a sua implementação numérica, que é conceitualmente simples (Pope, 1994b). Para um tempo dado, o escoamento turbulento reativo é representado por uma grande quantidade de partículas, cada um tendo seu próprio conjunto de propriedades (posição, velocidade, composições, etc.). Estas propriedades evoluem de acordo com a formulação de equações estocásticas de forma que, as partículas numéricas simulem às partículas do escoamento.

B Resultados Adicionais

Neste apêndice são apresentados e discutidos os resultados mostrados nas figuras 5.28 e 5.29 que correspondem ao estudo da influência dos modelos de mistura na média e no desvio padrão de c em um PaSR. As figuras, B.1– B.6, correspondem à operação do PaSR utilizando, os modelos IEM, LM para $d_0 = 0, 4 e d_0 = 1$, EIEM e ELM para $d_0 = 0, 4 e d_0 = 1$.

Nota-se, das figuras B.1(a), B.2(a) e B.3(a), que a média de c é maior para misturas rápidas ($\mathcal{X} = 2$) do que para misturas lentas ($\mathcal{X} = 0, 5$), porém esta diferença é menor a medida que a combustão torna-se intensa. Neste caso, o processo de combustão é dominante em relação ao de mistura. Conseqüentemente, a escolha do modelo de mistura não exerce uma influência determinante sobre o PaSR. O caso contrário acontece nas zonas de combustão fraca onde o processo de mistura é dominante sobre o processo de combustão. Neste caso, a velocidade da mistura possui um papel determinante mesmo nos valores médios de c.

As figuras B.1(b), B.2(b) e B.3(b), no caso de uma mistura lenta, mostram que, em uma extensa faixa de regimes de combustão, o desvio padrão, σ , é maior do que no caso de uma mistura rápida. Isto é consequência da forma bi-modal da PDF obtida para o caso de uma mistura lenta, pois estas PDFs possuem altos valores de σ . Além disso, percebe-se que, partindo de um regime de combustão intensa, à medida que \mathcal{Y} é diminuído, a variância aumenta gradativamente.

Os valores de $\langle c \rangle$ e σ obtidos usando os modelos EIEM e ELM com $d_0 = 0, 4$ e $d_0 = 1$, são mostrados nas figuras B.4, B.5, e B.6 para os casos de mistura rápida ($\mathcal{Z} = 2$) e lenta ($\mathcal{Z} = 0, 5$) e diferentes valores de \mathcal{Y} . Estes resultados correspondem aos modelos de mistura EIEM, de Langevin estendido com $d_0 = 0, 4$ e $d_0 = 1$.

A comparação da figura B.4(a) com a figura B.1(a) mostra que a curvas de $\langle c \rangle$ obtidas pelo modelo EIEM apresentam maior declividade do que aquelas calculadas pelo modelo IEM. Assim, o valor médio de c obtido pelo modelo EIEM é sempre menor do que o do modelo IEM. Esta diferença é mais acentuada na região de combustão fraca e é também observada no desvio

Figura B.1: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2 \ e \ 0, 5$, utilizando o modelo IEM. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{X} = 2 \ e \ \mathcal{Y} = 0,167$; (ii) $\mathcal{X} = 0,5 \ e \ \mathcal{Y} = 0,080$.

Figura B.2: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2$ e 0,5, utilizando o modelo LM para $d_0 = 0, 4$. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{X} = 2$ e $\mathcal{Y} = 0,035$; (ii) $\mathcal{X} = 0,5$ e $\mathcal{Y} = 0,030$.

Figura B.3: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2$ e 0,5, utilizando o modelo LM para $d_0 = 1$. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{X} = 2$ e $\mathcal{Y} = 0,167$; (ii) $\mathcal{X} = 0,5$ e $\mathcal{Y} = 0,167$.

padrão, mostrado nas figuras B.4(b) e B.1(b), onde pode ser verificado que o modelo EIEM apresenta uma maior variação de σ do que o modelo IEM.

A figura B.5 mostra a média e o desvio padrão de c obtidos utilizando o modelo ELM com $d_0 = 0,4$ para os casos de uma mistura lenta e rápida. Nesta figura percebe-se que as curvas que representam o caso de uma mistura lenta ($\mathcal{Z} = 0,5$) apresentam fortes oscilações em $\langle c \rangle$ e σ . Estas oscilações acontecem nas região próxima à zonas de combustão fraca. A razão deste comportamento anômalo não foi investigada, porém, acredita-se que este é relacionado à forma fortemente bi-modal da PDF. Trabalhos futuros que levem em conta a sensibilidade do resultado da simulação estocástica com respeito ao número de partículas precisam ser desenvolvidos com o propósito de verificar esta suposição.

A figura B.5 mostra a média e o desvio padrão de c utilizando o modelo ELM com $d_0 = 1$ para os casos de misturas lenta e rápida. Note-se que a curva de $\langle c \rangle$ para o caso de uma mistura lenta cruza a curva da mistura rápida. Esta intersecção acontece aproximadamente para $\mathcal{Y} = 0,060$. Abaixo deste valor a curva de $\langle c \rangle$ obtida para o caso de uma mistura lenta mostra valores superiores à do caso de uma mistura rápida. Este comportamento atípico que apresenta o valor de $\langle c \rangle$ calculado pelo modelo ELM para $d_0 = 1$ para o caso de uma mistura lenta, merece ser investigado em trabalhos futuros. Percebe-se também, para o caso da curva que descreve a mistura lenta que, à diferença dos modelos de mistura IEM, LM e EIEM, o modelo ELM apresenta um crescimento de σ nas zonas vizinhas ao regime de combustão fraca.

Figura B.4: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2$ e 0,5, utilizando o modelo EIEM. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{Z} = 2$ e $\mathcal{Y} = 0,035$; (ii) $\mathcal{Z} = 0,5$ e $\mathcal{Y} = 0,080$.

Figura B.5: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2 \ e \ 0, 5$, utilizando o modelo ELM para $d_0 = 0, 4$. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{Z} = 2 \ e \ \mathcal{Y} = 0,042$; (ii) $\mathcal{Z} = 0, 5 \ e \ \mathcal{Y} = 0,042$.

Figura B.6: Média (a) e desvio padrão (b); da variável de progresso de reação c como função de \mathcal{Y} e para $\mathcal{X} = 2$ e 0, 5, utilizando o modelo ELM para $d_0 = 1$. Nestes gráficos também são mostrados PDFs para: (i) $\mathcal{Z} = 2$ e $\mathcal{Y} = 0,060$; (ii) $\mathcal{Z} = 0,5$ e $\mathcal{Y} = 0,060$.